Reducing bromide and iodide in the source water, increasing air circulation in indoor pools, and assuring the cleanliness of swimmers.
Drowning in disinfection byproducts? Assessing swimming pool water.
Zwiener C, Richardson SD, DeMarini DM, Grummt T, Glauner T, Frimmel FH.
Source
Engler-Bunte-Institute, Universitaet Karlsruhe, Karlsruhe, Germany. christian.zwiener@ciw.uni-karlsruhe.de
Erratum in
Environ Sci Technol. 2008 Mar 1;42(5):1812. De Marini, David M [corrected to DeMarini, David M].
Abstract
Disinfection is mandatory for swimming pools: public pools are usually disinfected by gaseous chlorine or sodium hypochlorite and cartridge filters; home pools typically use stabilized chlorine. These methods produce a variety of disinfection byproducts (DBPs), such as trihalomethanes (THMs), which are regulated carcinogenic DBPs in drinking water that have been detected in the blood and breath of swimmers and of nonswimmers at indoor pools. Also produced are halogenated acetic acids (HAAs) and haloketones, which irritate the eyes, skin, and mucous membranes; trichloramine, which is linked with swimming-pool-associated asthma; and halogenated derivatives of UV sun screens, some of which show endocrine effects. Precursors of DBPs include human body substances, chemicals used in cosmetics and sun screens, and natural organic matter. Analytical research has focused also on the identification of an additional portion of unknown DBPs using gas chromatography (GC)/mass spectrometry (MS) and liquid chromatography (LC)/MS/MS with derivatization. Children swimmers have an increased risk of developing asthma and infections of the respiratory tract and ear. A 1.6-2.0-fold increased risk for bladder cancer has been associated with swimming or showering/bathing with chlorinated water. Bladder cancer risk from THM exposure (all routes combined) was greatest among those with the GSTT1-1 gene. This suggests a mechanism involving distribution of THMs to the bladder by dermal/inhalation exposure and activation there by GSTT1-1 to mutagens. DBPs may be reduced by engineering and behavioral means, such as applying new oxidation and filtration methods, reducing bromide and iodide in the source water, increasing air circulation in indoor pools, and assuring the cleanliness of swimmers. The positive health effects gained by swimming can be increased by reducing the potential adverse health risks.
No comments:
Post a Comment